### **Equilibrium Computation in First-Price Auctions with Correlated Priors**

<sup>1</sup>University of Edinburgh, <sup>2</sup>University of Glasgow, <sup>3</sup>University of Oxford





#### Aris Filos-Ratsikas<sup>1</sup>, Yiannis Giannakopoulos<sup>2</sup>, Alexandros Hollender<sup>3</sup>, **Charalampos Kokkalis<sup>1</sup>**

























### \$10





















#### ???















### **The Induced Game**

### The Induced Game

- Set of bidders  $N = \{1, 2, ..., n\}$ 

### **The Induced Game**

- Set of bidders  $N = \{1, 2, ..., n\}$
- Value space and bidding space  $V, B \subseteq [0,1]$

#### **The Induced Game**

- Set of bidders  $N = \{1, 2, ..., n\}$
- Value space and bidding space  $V, B \subseteq [0,1]$
- Pure strategy:  $\beta_i : V \rightarrow B$

### The Induced Game

- Set of bidders  $N = \{1, 2, ..., n\}$
- Value space and bidding space  $V, B \subseteq [0,1]$
- Pure strategy:  $\beta_i : V \rightarrow B$

- **Ex-post utility:**  $\tilde{u}_i(\mathbf{b}; v_i) := \begin{cases} \frac{1}{|W(\mathbf{b})|} (v_i - b_i), & \text{if } i \in W(\mathbf{b}), \\ 0, & \text{otherwise,} \end{cases}$ 

where 
$$W(\mathbf{b}) = \operatorname{argmax}_{j \in N} b_j$$

### **The Induced Game**

- Set of bidders  $N = \{1, 2, ..., n\}$
- Value space and bidding space  $V, B \subseteq [0,1]$
- Pure strategy:  $\beta_i : V \rightarrow B$

- **Ex-post utility:**  $\tilde{u}_i(\mathbf{b}; v_i) := \begin{cases} \frac{1}{|W(\mathbf{b})|} (v_i - b_i), & \text{if } i \in W(\mathbf{b}), \\ 0, & \text{otherwise,} \end{cases}$ 

- Expected utility of bidder i:  $u_i(b,\beta)$ 

where  $W(\mathbf{b}) = \operatorname{argmax}_{j \in N} b_j$ 

$$_{-\mathbf{i}}; v_i) := \mathbb{E}_{\mathbf{v}_{-\mathbf{i}} \sim \mathbf{F}_{-\mathbf{i}}} [\tilde{u}_i(b, \beta_{-\mathbf{i}}(\mathbf{v}_{-\mathbf{i}}); v_i)]$$

### **The Induced Game**

- Set of bidders  $N = \{1, 2, ..., n\}$
- Value space and bidding space  $V, B \subseteq [0,1]$
- Pure strategy:  $\beta_i : V \rightarrow B$

- **Ex-post utility:**  $\tilde{u}_i(\mathbf{b}; v_i) := \begin{cases} \frac{1}{|W(\mathbf{b})|} (v_i - b) \\ 0 \end{cases}$ 

- Expected utility of bidder i:  $u_i(b,\beta)$ 

$$b_i$$
), if  $i \in W(\mathbf{b})$ , where  $W(\mathbf{b}) = \arg\max_{j \in N} b_j$  otherwise,

$$_{\mathbf{i}}; v_i) := \mathbb{E}_{\mathbf{v}_{-\mathbf{i}} \sim \mathbf{F}_{-\mathbf{i}}} [\tilde{u}_i(b, \beta_{-\mathbf{i}}(\mathbf{v}_{-\mathbf{i}}); v_i)]$$

What are these distributions?

Independent

Independent

#### Subjective Priors

Independent

Common Priors (IPV) — Subjective Priors

#### Independent i.i.d. —— Common Priors (IPV) ——— Subjective Priors

#### Independent i.i.d. —— Common Priors (IPV) — Subjective Priors

Joint

Joint

Affiliated Priors (APV) — Correlated Priors

Independent i.i.d. —— Common Priors (IPV) — Subjective Priors

# Independent i.i.d. $\longrightarrow$ Common Provide the second structure of the second stru

Independent i.i.d. —— Common Priors (IPV) ——— Subjective Priors

SAPV → Affiliated Priors (APV) → Correlated Priors

# Joint

Independent i.i.d. —— Common Priors (IPV) — Subjective Priors

SAPV → Affiliated Priors (APV) → Correlated Priors

These can be continuous (CFPA) or discrete (DFPA).

### **Bayes-Nash Equilibrium**

- A strategy profile  $\beta = (\beta_1, \dots, \beta_n)$  is an  $\varepsilon$ -approximate pure Bayes-Nash Equilibrium if for any bidder  $i \in N$ , any value  $v_i \in V$ , and any bid  $b \in B$ :  $u_i(\beta_i(v_i), \beta_{-\mathbf{i}}; v_i) \ge u_i(b, \beta_{-\mathbf{i}}; v_i) - \varepsilon$ 

At equilibrium, no bidder wants to unilaterally change strategy.

### **Bayes-Nash Equilibrium**

- A strategy profile  $\beta = (\beta_1, \dots, \beta_n)$  is an  $\varepsilon$ -approximate pure Bayes-Nash Equilibrium if for any bidder  $i \in N$ , any value  $v_i \in V$ , and any bid  $b \in B$ :  $u_i(\beta_i(v_i), \beta_{-\mathbf{i}}; v_i) \ge u_i(b, \beta_{-\mathbf{i}}; v_i) - \varepsilon$ 

At equilibrium, no bidder wants to unilaterally change strategy.

- If  $\beta$  also satisfies  $\beta_i = \beta_i$ , for all  $i, j \in N$ , then the equilibrium is symmetric.

- In the CFPA setting, representation of strategies is not straightforward.

- Monotone strategy:  $\beta(v) \leq \beta(v'), \quad \forall v \leq v'$

- In the CFPA setting, representation of strategies is not straightforward.

- In the CFPA setting, representation of strategies is not straightforward.
- Monotone strategy:  $\beta(v) \leq \beta(v'), \quad \forall v \leq v'$
- Jump-point representation [Athey'01]: provide the points in the value space where the strategy "jumps" to the next bid.

![](_page_28_Figure_4.jpeg)

1. Does such an equilibrium always exist?

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price under mild assumptions.

- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01]

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01] under mild assumptions.
- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & Riley'85].

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01] under mild assumptions.
- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & Riley'85].
- 2. Can we compute it/decide whether it exists efficiently?

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01] under mild assumptions.
- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & Riley'85].
- 2. Can we compute it/decide whether it exists efficiently?
- [Filos-Ratsikas et al.'21] introduced the computational study of the problem, showed PPADcompleteness in the CFPA with *subjective priors* setting.

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01] under mild assumptions.
- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & Riley'85].
- 2. Can we compute it/decide whether it exists efficiently?
- [Filos-Ratsikas et al.'21] introduced the computational study of the problem, showed PPADcompleteness in the CFPA with *subjective priors* setting.
- Follow up work in [Chen & Peng'23] proved PPAD-completeness in the CFPA with common priors setting (under a "trilateral" tie-breaking rule).
## Equilibrium Questions

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey'01] under mild assumptions.
- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & Riley'85].
- 2. Can we compute it/decide whether it exists efficiently?
- [Filos-Ratsikas et al.'21] introduced the computational study of the problem, showed PPADcompleteness in the CFPA with *subjective priors* setting.
- Follow up work in [Chen & Peng'23] proved PPAD-completeness in the CFPA with common priors setting (under a "trilateral" tie-breaking rule).
- In the DFPA with *subjective priors*, the decision problem was shown to be NP-hard [Filos-Ratsikas et al.'24].

Can we efficiently decide whether an equilibrium exists?

Can we efficiently decide whether an equilibrium exists?

**Theorem** [this work]: Deciding the existence of an ε-PBNE in a DFPA with general correlated priors is NP-hard.

Can we efficiently decide whether an equilibrium exists?

**Theorem** [this work]: Deciding the existence of an ε-PBNE in a DFPA with general correlated priors is NP-hard.

What about mixed equilibria?

- Mixed strategy:  $\beta_i : V \to \Delta(B)$  (distribution over bids)

- Mixed strategy:  $\beta_i : V \to \Delta(B)$  (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium

- Mixed strategy:  $\beta_i : V \to \Delta(B)$  (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium
- games)

- Mixed strategies restore continuity  $\Rightarrow$  existence of an MBNE (Bayesian)

- Mixed strategy:  $\beta_i : V \to \Delta(B)$  (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity  $\Rightarrow$  existence of an MBNE (Bayesian games)
- Question: Does a monotone MBNE exist?

**Theorem [this work]:** There are instances of the DFPA with correlated values which admit no monotone MBNE.

**Counterexample:** 



$$B = \left\{0, \frac{1}{10}, \frac{2}{10}, \dots, 1\right\}$$





**Theorem** [this work]: There are instances of the DFPA with correlated values which admit no monotone MBNE.

What is the appropriate class of priors that recovers existence?

**Theorem** [this work]: There are instances of the DFPA with correlated values which admit no monotone MBNE.

What is the appropriate class of priors that recovers existence?

**Theorem** [this work]: In DFPA with *affiliated* private values a monotone MBNE always exists.

**Theorem** [this work]: There are instances of the DFPA with correlated values which admit no monotone MBNE.

What is the appropriate class of priors that recovers existence?

1/2

**Theorem** [this work]: In DFPA with *affiliated* private values a monotone MBNE always exists.  $v_2 \quad 1 \stackrel{\bullet}{\uparrow}$ 

> Affiliation condition:  $f(v \lor v') \cdot f(v \land v') \ge f(v) \cdot f(v')$





### We provide two different approache settings:

We provide two different approaches to achieve positive results in symmetric

### We provide two different approache settings:

1. Bid Sparsification

We provide two different approaches to achieve positive results in symmetric

We provide two different approaches to achieve positive results in symmetric settings:

- 1. Bid Sparsification
- 2. Bid Densification

We provide two different approaches to achieve positive results in symmetric settings:

- 1. Bid Sparsification
- 2. Bid Densification

- In the CFPA with continuous bidding space, closed form solutions for the equilibrium are known in the i.i.d. and SAPV settings [Milgrom & Weber'82].

#### i.i.d.

$$\beta(v) := v - \int_0^v \frac{G(y)}{G(v)} \, \mathrm{d}y \quad \forall v \in [0,1]$$

where G(y) is the cdf of the r.v.  $Y_1 := \max X_i$  $2 \le i \le n$ 

- In the CFPA with continuous bidding space, closed form solutions for the equilibrium are known in the i.i.d. and SAPV settings [Milgrom & Weber'82].

#### i.i.d.

$$\beta(v) := v - \int_0^v \frac{G(y)}{G(v)} \, \mathrm{d}y \quad \forall v \in [0,1]$$

where G(y) is the cdf of the r.v.  $Y_1 := \max X_i$  $2 \leq i \leq n$ 

- In the CFPA with continuous bidding space, closed form solutions for the equilibrium are known in the i.i.d. and SAPV settings [Milgrom & Weber'82].

#### SAPV

$$\beta(v) := v - \int_0^v L_v(y) \, \mathrm{d}y \quad \forall v \in [0,1]$$
  
where  $L_v(y) := \exp\left(-\int_y^v \frac{g_t(t)}{G_t(t)} \, \mathrm{d}t\right) \quad \forall y \in [0,v]$ 

and  $g_t(Y_1), G_t(Y_1)$  are the pdf and cdf of the r.v.  $Y_1 := \max X_i$  $2 \leq i \leq n$ 

#### i.i.d.

$$\beta(v) := v - \int_0^v \frac{G(y)}{G(v)} \, \mathrm{d}y \quad \forall v \in [0,1]$$

where G(y) is the cdf of the r.v.  $Y_1 := \max X_i$  $2 \leq i \leq n$ 

#### But what about computation?

- In the CFPA with continuous bidding space, closed form solutions for the equilibrium are known in the i.i.d. and SAPV settings [Milgrom & Weber'82].

#### SAPV

$$\beta(v) := v - \int_0^v L_v(y) \, \mathrm{d}y \quad \forall v \in [0,1]$$
  
where  $L_v(y) := \exp\left(-\int_y^v \frac{g_t(t)}{G_t(t)} \, \mathrm{d}t\right) \quad \forall y \in [0,v]$ 

and  $g_t(Y_1), G_t(Y_1)$  are the pdf and cdf of the r.v.  $Y_1 := \max X_i$  $2 \leq i \leq n$ 

Can we adapt the closed-form solutions to efficiently compute equilibria?

# **Issue #1:** Continuous bidding space

Can we adapt the closed-form solutions to efficiently compute equilibria?

**Issue #1:** Continuous bidding space

- Can we adapt the closed-form solutions to efficiently compute equilibria?
- **Solution:** Approximate using (sufficiently dense) discrete bidding space.

**Issue #1:** Continuous bidding space **Issue #2:** Computation of integrals

- Can we adapt the closed-form solutions to efficiently compute equilibria?
- **Solution:** Approximate using (sufficiently dense) discrete bidding space.

**Issue #1:** Continuous bidding space **Issue #2:** Computation of integrals **Solution:** Approximate again, using properties of the distributions.

- Can we adapt the closed-form solutions to efficiently compute equilibria?
- **Solution:** Approximate using (sufficiently dense) discrete bidding space.



**Theorem:** Consider a CFPA with *n* bidders and symmetric APV and  $\delta$ -dense bidding space.

Then, we can compute an  $\varepsilon$ -approximate\* PBNE in time polynomial in the problem description and  $log(1/\epsilon)$ , if either of the following holds:

i) f is  $(\phi_1, \phi_2)$ -bounded, i.e.,  $\phi_1 \le f(x) \le \phi_2, \forall x \in [0,1]$ ii) The values are i.i.d.

\*approximation depends polynomially on  $\delta, n, \frac{\phi_2}{\phi_1}$ 





|      | i.i.d.                    | SAPV                                              | IPV | APV                                        | Correlated        |
|------|---------------------------|---------------------------------------------------|-----|--------------------------------------------|-------------------|
| CFPA | FPTAS* for δ-dense B      | (Symmetric) PBNE:<br>PTAS<br>FPTAS* for δ-dense B |     | <u>PTAS for</u><br><u>constant n</u>       |                   |
| DFPA | (Symmetric) MBNE:<br>PTAS | (Symmetric) MBNE:<br>PTAS                         |     | <u>MBNE: PTAS for</u><br><u>constant n</u> | PBNE: NP-complete |

### Computational Complexity

|      | i.i.d.                    | SAPV                                                            | IPV | APV                                        | Correlated        |
|------|---------------------------|-----------------------------------------------------------------|-----|--------------------------------------------|-------------------|
| CFPA | FPTAS* for δ-dense B      | <u>(Symmetric) PBNE:</u><br><u>PTAS</u><br>FPTAS* for δ-dense B | PBI | PTAS for<br>constant n                     |                   |
| DFPA | (Symmetric) MBNE:<br>PTAS | (Symmetric) MBNE:<br>PTAS                                       |     | <u>MBNE: PTAS for</u><br><u>constant n</u> | PBNE: NP-complete |

|      | i.i.d.                    | SAPV                                                            | IPV | APV                                               | Correlated        |
|------|---------------------------|-----------------------------------------------------------------|-----|---------------------------------------------------|-------------------|
| CFPA | FPTAS* for δ-dense B      | <u>(Symmetric) PBNE:</u><br><u>PTAS</u><br>FPTAS* for δ-dense B | PBI | PTAS for<br>constant n                            |                   |
| DFPA | (Symmetric) MBNE:<br>PTAS | (Symmetric) MBNE:<br>PTAS                                       | MBI | <u>MBNE: PTAS for</u><br><u>constant n</u><br>NE? | PBNE: NP-complete |

|      | i.i.d.                    | SAPV                                                            | IPV        | APV                                        | Correlated        |
|------|---------------------------|-----------------------------------------------------------------|------------|--------------------------------------------|-------------------|
| CFPA | FPTAS* for δ-dense B      | <u>(Symmetric) PBNE:</u><br><u>PTAS</u><br>FPTAS* for δ-dense B | PBI        | PTAS for<br>constant n<br>NE?              |                   |
| DFPA | (Symmetric) MBNE:<br>PTAS | (Symmetric) MBNE:<br>PTAS                                       | MBI<br>PBN | MBNE: PTAS for<br>constant n<br>NE?<br>NE? | PBNE: NP-complete |

|      | i.i.d.                                 | SAPV                                                                    | IPV        | APV                                        | Correlated        |
|------|----------------------------------------|-------------------------------------------------------------------------|------------|--------------------------------------------|-------------------|
| CFPA | <u>FPTAS* for δ-dense B</u><br>Strengt | <u>(Symmetric) PBNE:</u><br><u>PTAS</u><br>FPTAS* for δ-dense B<br>hen? | PBI        | PTAS for<br>constant n<br>NE?              |                   |
| DFPA | (Symmetric) MBNE:<br>PTAS              | (Symmetric) MBNE:<br>PTAS                                               | MBI<br>PBI | MBNE: PTAS for<br>constant n<br>NE?<br>NE? | PBNE: NP-complete |

### **Computational Complexity**

|      | i.i.d.                                 | SAPV                                                                 |
|------|----------------------------------------|----------------------------------------------------------------------|
| CFPA | <u>FPTAS* for δ-dense B</u><br>Strengt | <u>(Symmetric) PBNE</u><br><u>PTAS</u><br>FPTAS* for δ-dense<br>hen? |
| DFPA | (Symmetric) MBNE:<br>PTAS              | (Symmetric) MBNI<br>PTAS                                             |



Questions? charalampos.kokkalis@ed.ac.uk



### References

- 1. Information". In: Econometrica 69.4. 2001.
- 2. Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). 2023.
- 3. Computation (EC '21). 2021.
- 4. Computation (EC). 2024.
- 5. Management Science, 14(3):159–182. 1967.
- 6. Maskin and John G. Riley. Auction theory with private values. The American Economic Review 75(2):150–155. 1985.
- 7.
- 8.

[Athey'01] Susan Athey. "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete

[Chen & Peng'23] Xi Chen and Binghui Peng. "Complexity of Equilibria in First-Price Auctions under General Tie-Breaking Rules". In:

[Filos-Ratsikas et al.'21] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, and Diogo Poças. On the Complexity of Equilibrium Computation in First-Price Auctions. In Proceedings of the 22nd ACM Conference on Economics and

[Filos-Ratsikas et al.'24] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Charalampos Kokkalis. "On the Computation of Equilibria in Discrete First-Price Auctions". In: Proceedings of the 25th ACM Conference on Economics and

[Harsanyi'67] John C. Harsanyi. Games with incomplete information played by "Bayesian" players, I-III: Part I. The basic model.

[Maskin & Riley'85] Eric S. Maskin and John G. Riley. Auction theory with private values. The American Economic Review, Eric S.

[Milgrom & Weber'82] Paul R. Milgrom and Robert J. Weber. A theory of auctions and competitive bidding. Econometrica. 1982.

[Vickrey'62] W. Vickrey, "Auctions and Bidding Games," In: Recent Advances in Game Theory, Princeton University Conference. 1962.