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[ũi(b, β−i(v−i); vi)]



First-Price Auctions
The Induced Game

- Set of bidders N = {1,2,…, n}

- Value space and bidding space V, B ⊆ [0,1]

- Pure strategy: βi : V → B

- Ex-post utility:  ũi(b; vi) := {
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What are these distributions?
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Common Priors (IPV) Subjective Priors

Affiliated Priors (APV) Correlated Priors

These can be continuous (CFPA) or discrete (DFPA).
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Equilibrium if for any bidder , any value , and any bid :

β = (β1, …, βn)
i ∈ N vi ∈ V b ∈ B

ui(βi(vi), β−i; vi) ≥ ui(b, β−i; vi) − ε

At equilibrium, no bidder wants to unilaterally change strategy.

- If  also satisfies , for all , then the equilibrium is symmetric.β βi = βj i, j ∈ N
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Monotone Equilibria
- In the CFPA setting, representation of strategies is not straightforward.

- Monotone strategy: β(v) ≤ β(v′ ), ∀v ≤ v′ 

- Jump-point representation [Athey’01]: provide the points in the value space 
where the strategy “jumps” to the next bid.
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1. Does such an equilibrium always exist?

- Existence of equilibria in continuous first-price auctions was shown in the seminal work of [Athey’01] 
under mild assumptions.

- In discrete first-price auctions, equilibria need not exist, even when the priors are i.i.d. [Maskin & 
Riley’85].

2. Can we compute it/decide whether it exists efficiently?

- [Filos-Ratsikas et al.’21] introduced the computational study of the problem, showed PPAD-
completeness in the CFPA with subjective priors setting.

- Follow up work in [Chen & Peng’23] proved PPAD-completeness in the CFPA with common priors 
setting (under a “trilateral” tie-breaking rule).

- In the DFPA with subjective priors, the decision problem was shown to be NP-hard [Filos-Ratsikas et 
al.’24].
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What about mixed equilibria?
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- Question: Does a monotone MBNE exist?
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Affiliation condition:

f(v ∨ v′ ) ⋅ f(v ∧ v′ ) ≥ f(v) ⋅ f(v′ )
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Bid Densification

Can we adapt the closed-form solutions to efficiently compute equilibria?

Issue #1: Continuous bidding space

Solution: Approximate using (sufficiently dense) discrete bidding space.

Issue #2: Computation of integrals

Solution: Approximate again, using properties of the distributions.
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Theorem: Consider a CFPA with  bidders and

symmetric APV and -dense bidding space.


Then, we can compute an -approximate* PBNE

in time polynomial in the problem description and


, if either of the following holds:


i)  is -bounded, i.e.,  

ii) The values are i.i.d.

n
δ

ε

log(1/ε)

f (ϕ1, ϕ2) ϕ1 ≤ f(x) ≤ ϕ2, ∀x ∈ [0,1]

*approximation depends polynomially on δ, n,
ϕ2

ϕ1
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Thank you! 
Questions? charalampos.kokkalis@ed.ac.uk
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