On the Computation of Equilibria in Discrete First-Price Auctions

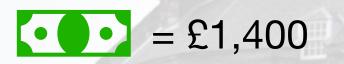
¹University of Edinburgh, ²University of Glasgow, ³University of Oxford

Aris Filos-Ratsikas¹, Yiannis Giannakopoulos², Alexandros Hollender³, **Charalampos Kokkalis¹**

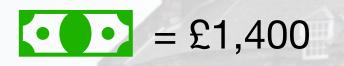
£1,100

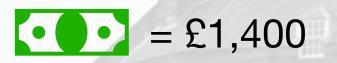


£1,100



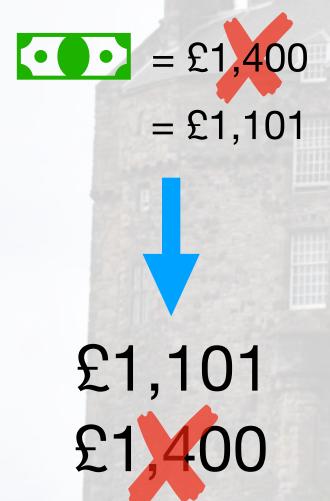
£1,100

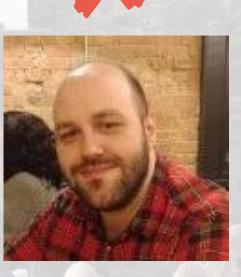




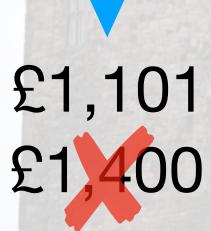
£1,101 £1,400

£1,100





Strategic environment induces game between bidders!

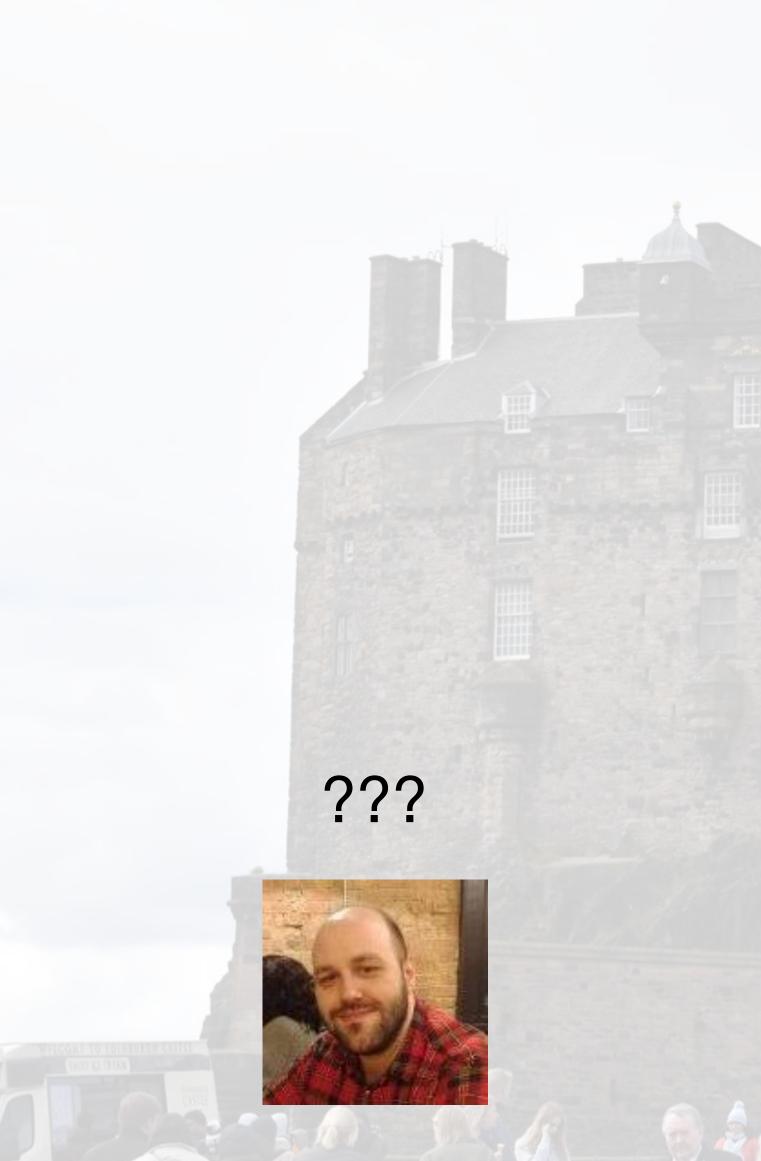


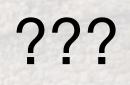
• • • = $\pounds 1,400$

= £1,101

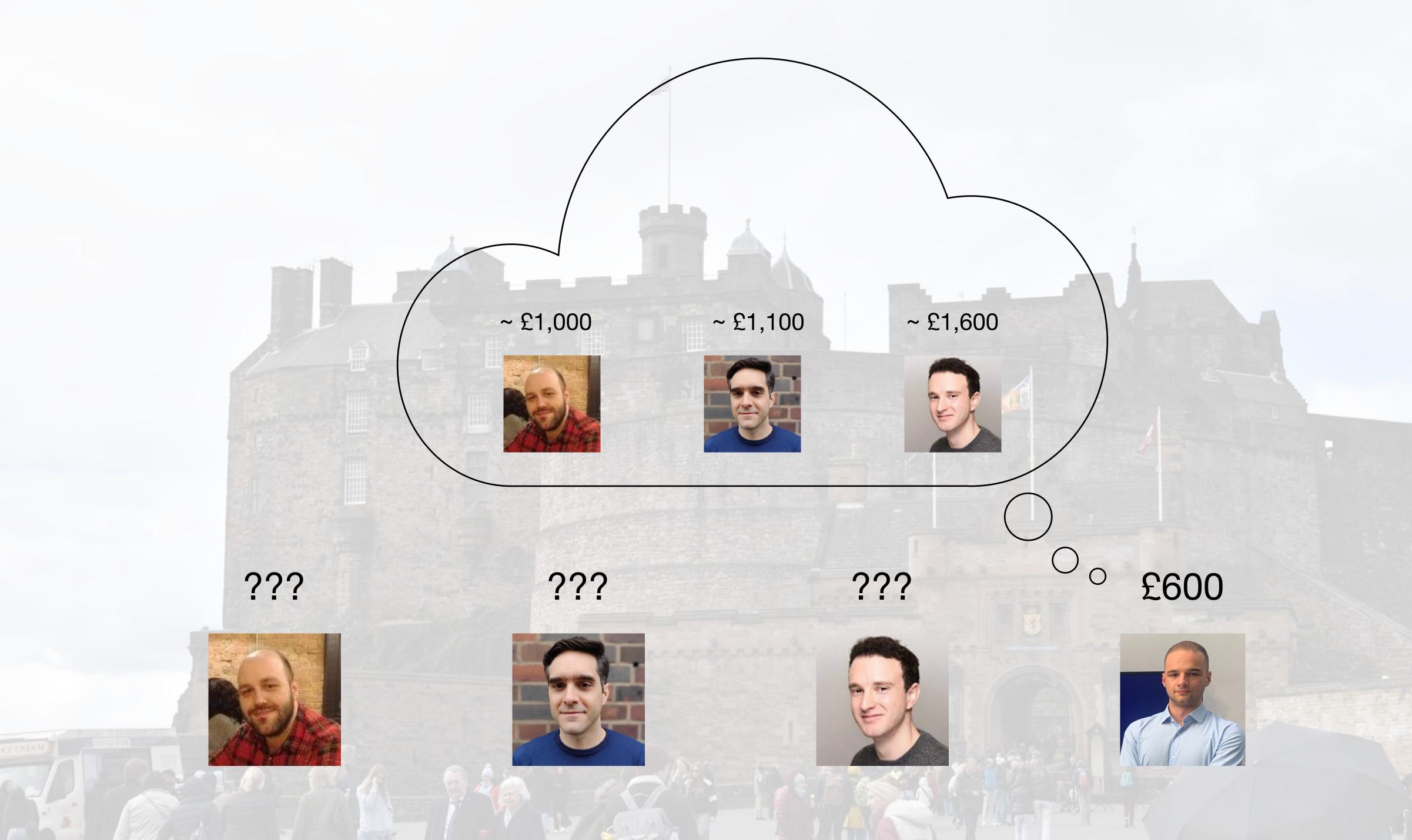
£1,100

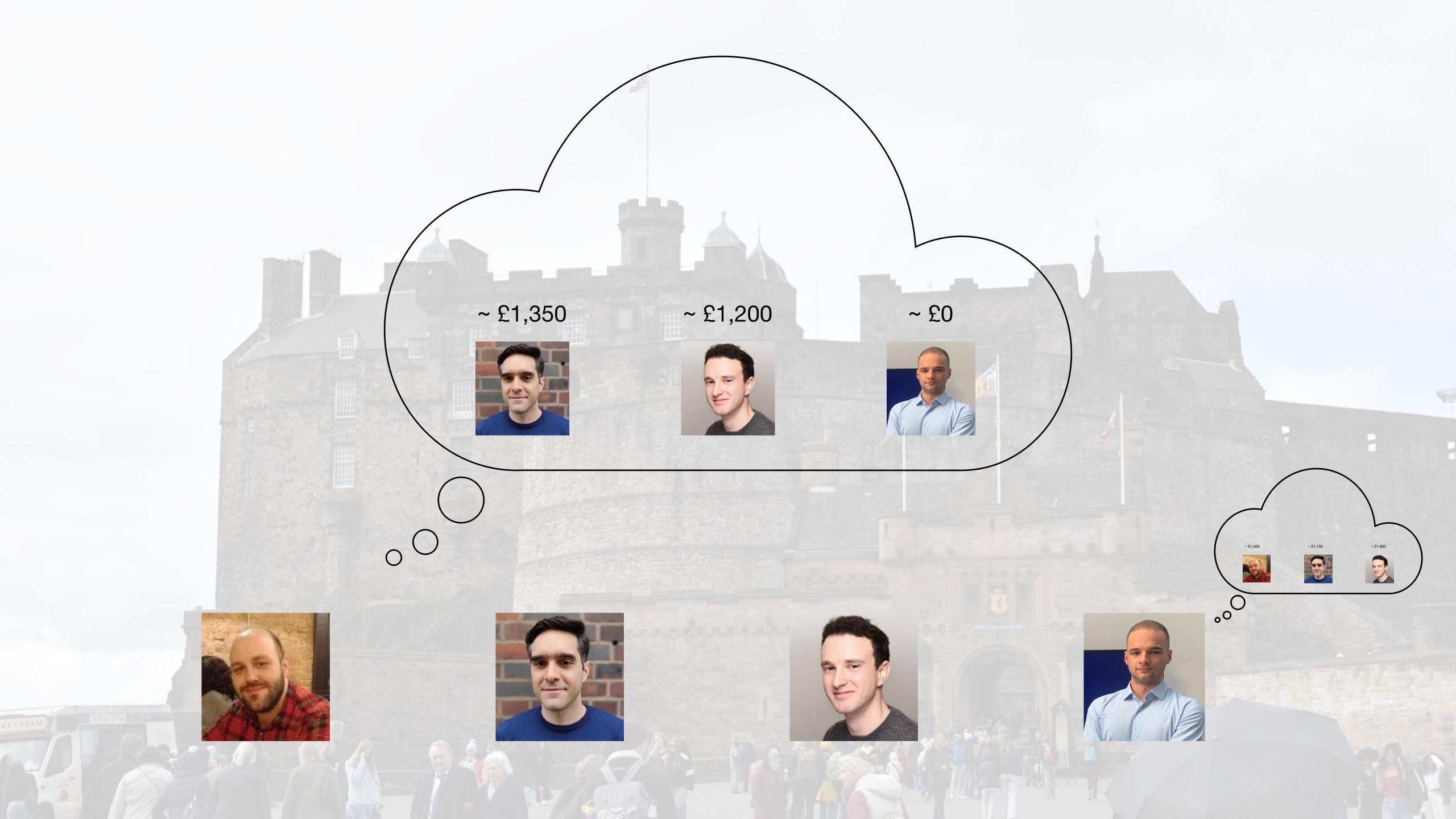
£900





???





The Induced Game

- Set of bidders $N = \{1, 2, ..., n\}$

- Set of bidders $N = \{1, 2, ..., n\}$
- Value space and bidding space $V, B \subset [0,1]$

- Set of bidders $N = \{1, 2, ..., n\}$
- Value space and bidding space $V, B \subset [0,1]$
- Pure strategy: $\beta_i : V \rightarrow B$

- Set of bidders $N = \{1, 2, ..., n\}$
- Value space and bidding space $V, B \subset [0,1]$
- Pure strategy: $\beta_i : V \rightarrow B$
- **Ex-post utility:** $\tilde{u}_i(\mathbf{b}; v_i) := \begin{cases} \frac{1}{|W(\mathbf{b})|} (v_i b_i), & \text{if } i \in W(\mathbf{b}), \\ 0, & \text{otherwise,} \end{cases}$

where
$$W(\mathbf{b}) = \operatorname{argmax}_{j \in N} b_j$$

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

- Independent Private Values (common priors): $F_{i,j} = F_{i',j}, \quad \forall i, i' \in N \setminus \{j\}$

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

 - Identical Independent Values (iid): bidder values are iid according to some distribution F

- Independent Private Values (common priors): $F_{i,j} = F_{i',j}, \quad \forall i, i' \in N \setminus \{j\}$

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

 - Identical Independent Values (iid): bidder values are iid according to some distribution F
- Expected utility of bidder i: $u_i(b, \beta_{-i}; v_i)$:=

- Independent Private Values (common priors): $F_{i,i} = F_{i',i}, \quad \forall i, i' \in N \setminus \{j\}$

$$= \mathbb{E}_{\mathbf{v}_{-\mathbf{i}} \sim \mathbf{F}_{-\mathbf{i}}} [\tilde{u}_i(b, \beta_{-\mathbf{i}}(\mathbf{v}_{-\mathbf{i}}); v_i)]$$

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

 - Identical Independent Values (iid): bidder values are iid according to some distribution F
- Expected utility of bidder i: $u_i(b, \beta_{-i}; v_i)$:=

This introduces a game of incomplete information!

- Independent Private Values (common priors): $F_{i,i} = F_{i',i}, \quad \forall i, i' \in N \setminus \{j\}$

$$= \mathbb{E}_{\mathbf{v}_{-\mathbf{i}} \sim \mathbf{F}_{-\mathbf{i}}} [\tilde{u}_i(b, \beta_{-\mathbf{i}}(\mathbf{v}_{-\mathbf{i}}); v_i)]$$

- Prior beliefs: Each bidder i has prior (subjective) belief $F_{i,j}$ for bidder j

 - Identical Independent Values (iid): bidder values are iid according to some distribution F
- Expected utility of bidder i: $u_i(b, \beta_{-i}; v_i)$:=

This introduces a game of incomplete information! Solution concept? Bayes-Nash Equilibrium

- Independent Private Values (common priors): $F_{i,i} = F_{i',i}, \quad \forall i, i' \in N \setminus \{j\}$

$$= \mathbb{E}_{\mathbf{v}_{-\mathbf{i}} \sim \mathbf{F}_{-\mathbf{i}}} [\tilde{u}_i(b, \beta_{-\mathbf{i}}(\mathbf{v}_{-\mathbf{i}}); v_i)]$$

Bayes-Nash Equilibrium

- A strategy profile $\beta = (\beta_1, \dots, \beta_n)$ is an ε -approximate pure Bayes-Nash Equilibrium if for any bidder $i \in N$, any value $v_i \in V$, and any bid $b \in B$: $u_i(\beta_i(v_i), \beta_{-\mathbf{i}}; v_i) \geq u_i(b, \beta_{-\mathbf{i}}; v_i) - \varepsilon$
- At an equilibrium, no bidder wants to unilaterally change strategy.

We refer to a 0-approximate PBNE as an *exact* PBNE.

- 1. Does such an equilibrium always exist?

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of Athey [Ath01] under mild assumptions.

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of Athey [Ath01] under mild assumptions.
- 2. Can we compute it efficiently?

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of Athey [Ath01] under mild assumptions.
- 2. Can we compute it efficiently?
- [FGHLP23] introduced computational study of the problem, showed PPAD-completeness in the continuous, subjective prior setting.

- 1. Does such an equilibrium always exist?
- Existence of equilibria in continuous first-price auctions was shown in the seminal work of Athey [Ath01] under mild assumptions.
- 2. Can we compute it efficiently?
- [FGHLP23] introduced computational study of the problem, showed PPAD-completeness in the continuous, subjective prior setting.
- Follow up work in [CP23] proved PPAD-completeness of the problem in the continuous common priors setting (under a "trilateral" tie-breaking rule).

Prior Work

continuous priors

PBNE (trilateral tie-breaking): PPAD-complete [CP23]

iid priors PBNE: PPAD- and FIXP-complete [FGHLP23]

common priors

subjective priors

Prior Work

continuous priors

PBNE (trilateral tie-breaking): PPAD-complete [CP23]

iid priors

- Prior work left the setting of discrete distributions as an open problem.

PBNE: PPAD- and FIXP-complete [FGHLP23]

common priors

subjective priors

- Discrete bidding space

- Discrete bidding space
- Discrete, subjective prior distributions

- Discrete bidding space
- Discrete, subjective prior distributions
- see [EMS09])

- Discrete distributions \Rightarrow Existence of equilibria is not guaranteed (e.g.,

- Discrete bidding space
- Discrete, subjective prior distributions
- see [EMS09])
- Question: Could the problem be easier in the discrete setting?

- Discrete distributions \Rightarrow Existence of equilibria is not guaranteed (e.g.,

- 1. NP-completeness of deciding the existence of a Pure Bayes-Nash Equilibrium in a DFPA with subjective priors
- 2. PPAD-completeness of computing a Mixed Bayes-Nash Equilibrium in a DFPA with subjective priors
- 3. PTAS for computing a symmetric Mixed Bayes-Nash Equilibrium when the priors are iid

Main Results

Theorem: [FGHK24] Deciding the existence of ε -PBNE in a DFPA with subjective priors is NP-complete.

Theorem: [FGHK24] Deciding the existence of ε -PBNE in a DFPA with subjective priors is NP-complete.

Proof Outline

Theorem: [FGHK24] Deciding the existence of ε-PBNE in a DFPA with subjective priors is NP-complete.

Proof Outline

profile and her value using dynamic programming, use it to verify certificates.

1. NP membership: Compute a bidder's expected utility given a strategy

Theorem: [FGHK24] Deciding the existence of ε -PBNE in a DFPA with subjective priors is NP-complete.

Proof Outline

- profile and her value using dynamic programming, use it to verify certificates.
- 2. NP-hardness: Reduce from the CIRCUIT-SAT problem.

1. NP membership: Compute a bidder's expected utility given a strategy

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of a MBNE

- Mixed strategy: $\beta_i: V \to \Delta(B)$ (distribution over bids)
- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of a MBNE
- Computing an ε-MBNE in a DFPA is a Total Search Problem.

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (c-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of a MBNE
- Computing an ε-MBNE in a DFPA is a Total Search Problem.
- Question: What is the appropriate complexity class for this problem? PPAD?

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (
 c-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of
- Computing an ε-MBNE in a DFPA is a Total Search
- Question: What is the appropriate complexity class

Reminder

PPAD: class containing problems where existence is guaranteed due to a parity argument on directed graphs (e.g., NASH)

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (c-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of a MBNE
- Computing an ε-MBNE in a DFPA is a Total Search Problem.
- Question: What is the appropriate complexity class for this problem? PPAD?

- Mixed strategy: $\beta_i : V \to \Delta(B)$ (distribution over bids)
- Solution concept: (c-approximate) Mixed Bayes-Nash Equilibrium
- Mixed strategies restore continuity \Rightarrow existence of a MBNE
- Computing an ε-MBNE in a DFPA is a Total Search Problem.
- Question: What is the appropriate complexity class for this problem? PPAD?
- Idea: Connection between mixed equilibria in the discrete setting and pure equilibria in the continuous setting.

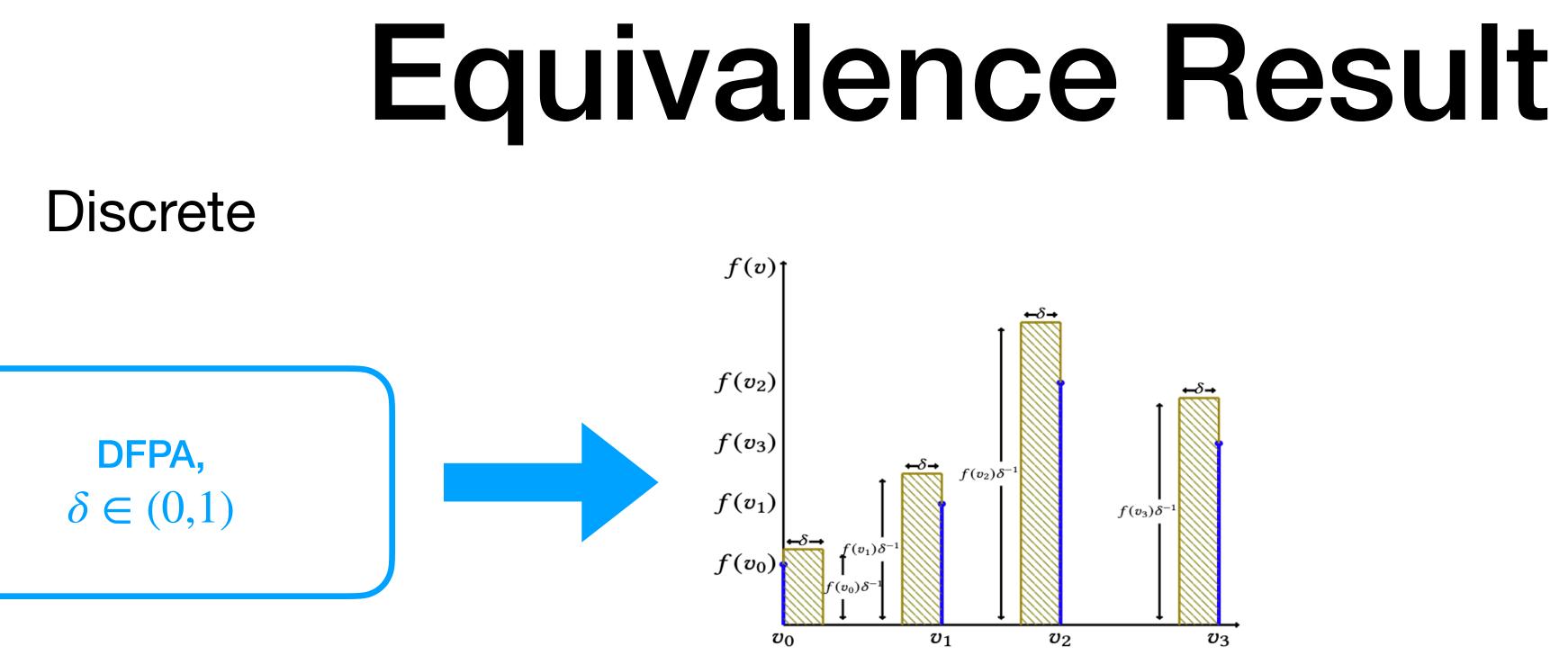
Discrete

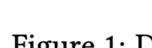
Continuous

Discrete

DFPA, $\delta \in (0,1)$

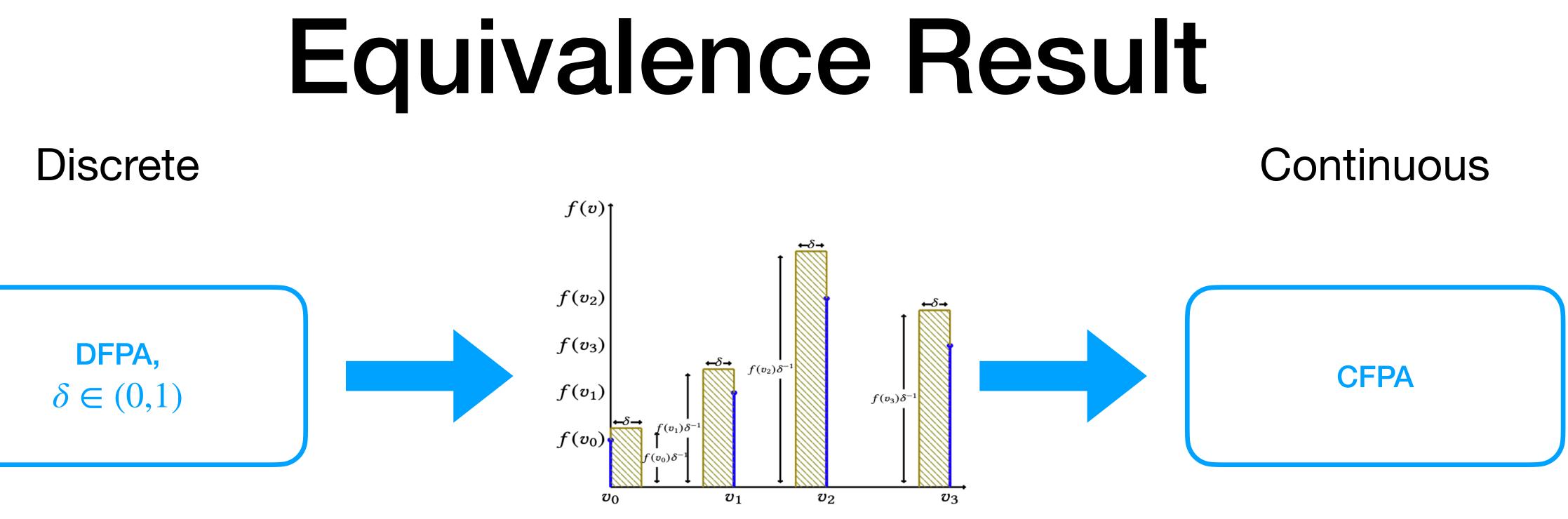
Continuous





Continuous

Figure 1: Discrete \rightarrow Continuous



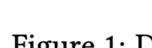
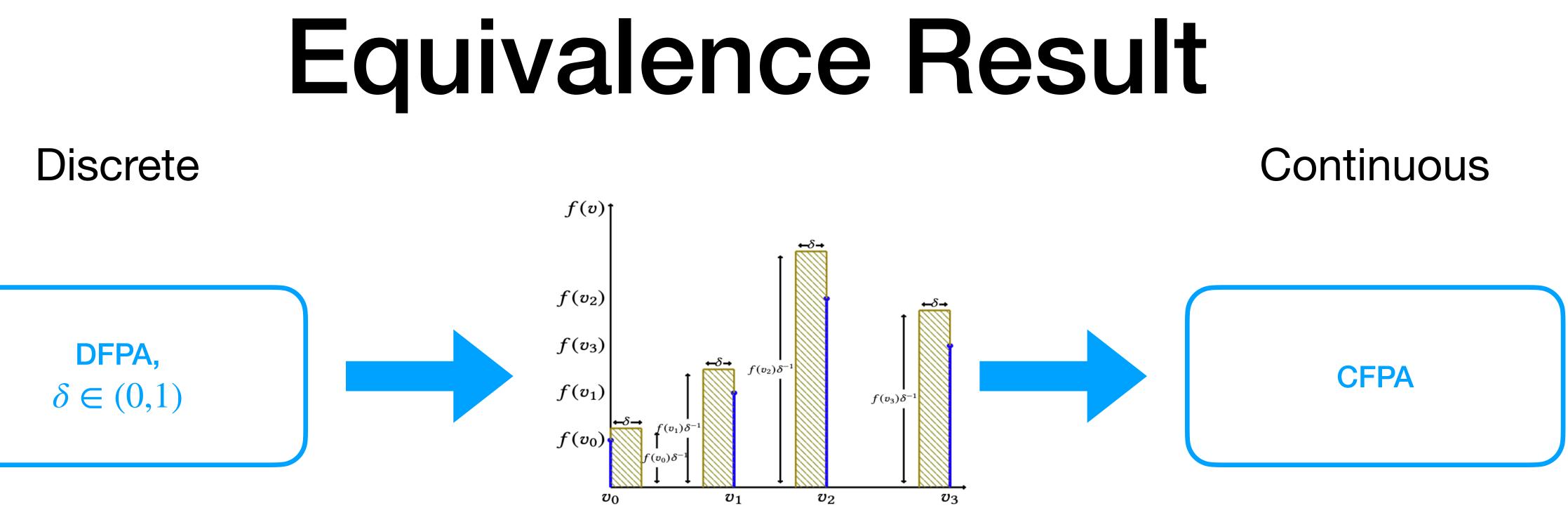


Figure 1: Discrete \rightarrow Continuous



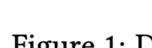
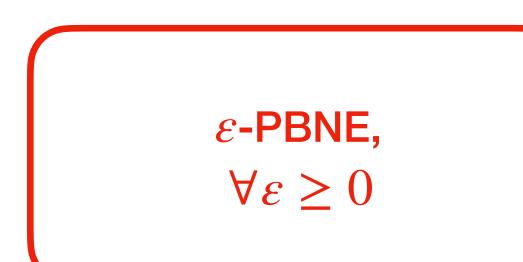
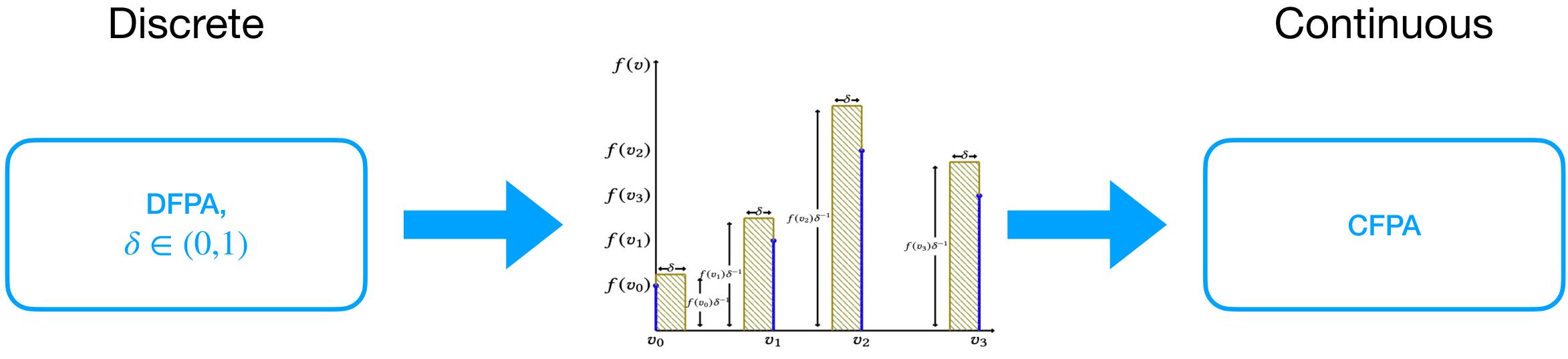
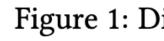
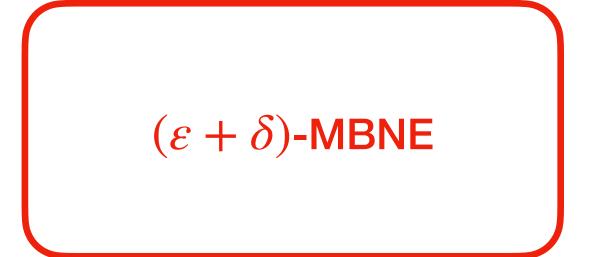


Figure 1: Discrete \rightarrow Continuous









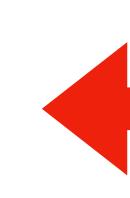
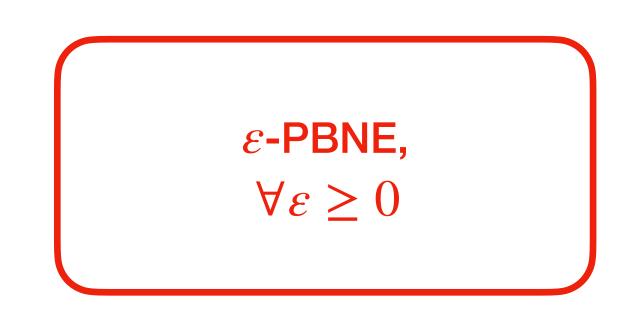


Figure 1: Discrete \rightarrow Continuous



Continuous

Discrete

Continuous

CFPA, $\delta \in (0,1)$

Discrete

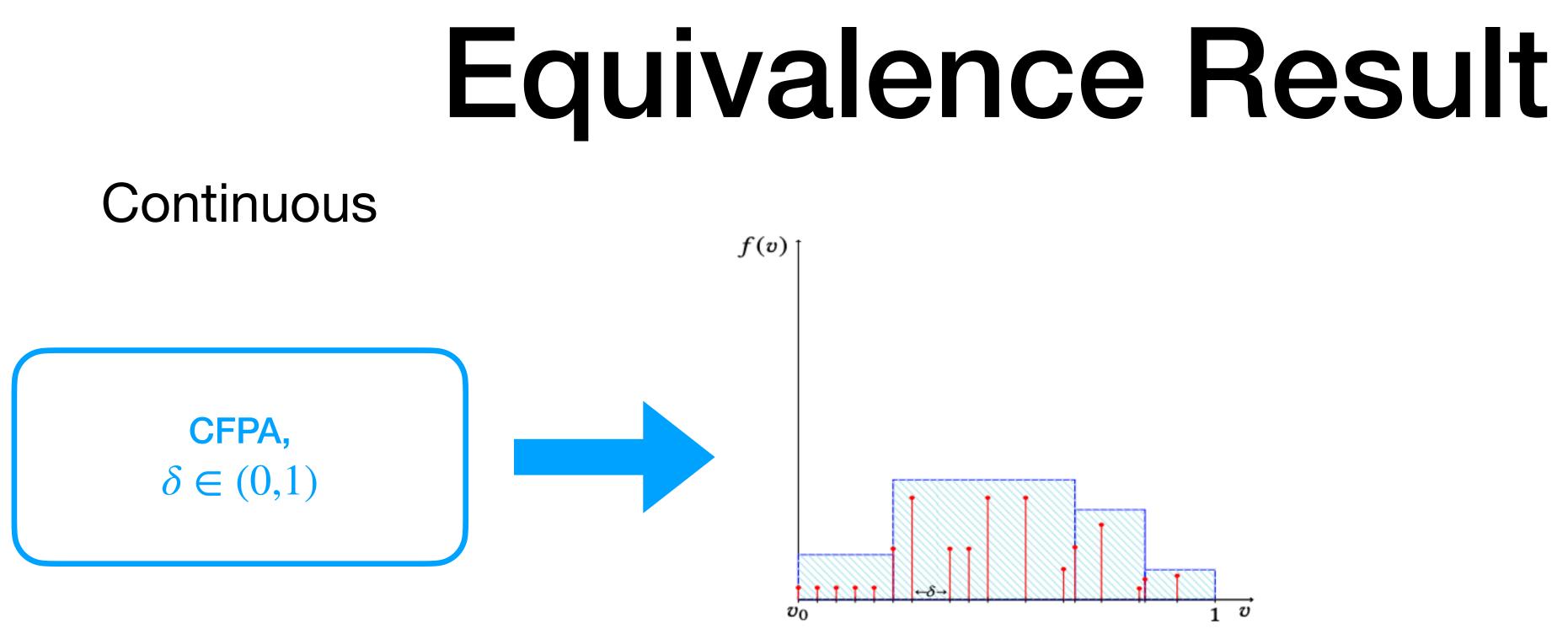


Figure 2: Continuous \rightarrow Discrete

Discrete

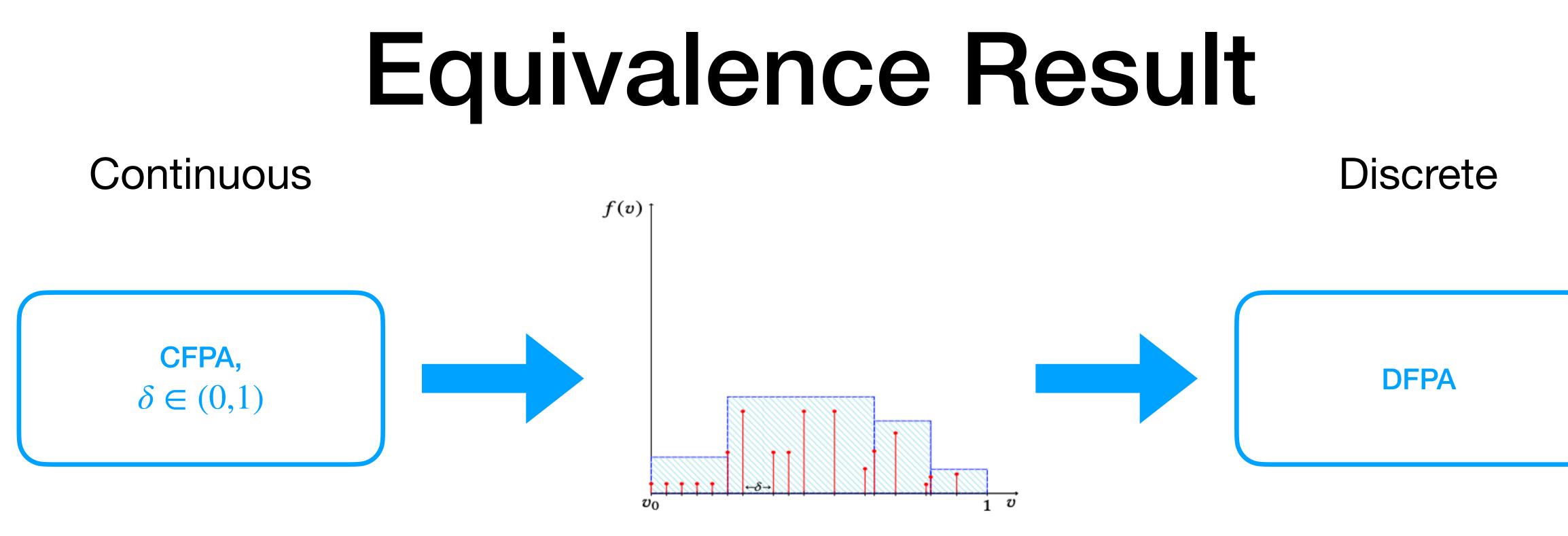


Figure 2: Continuous \rightarrow Discrete

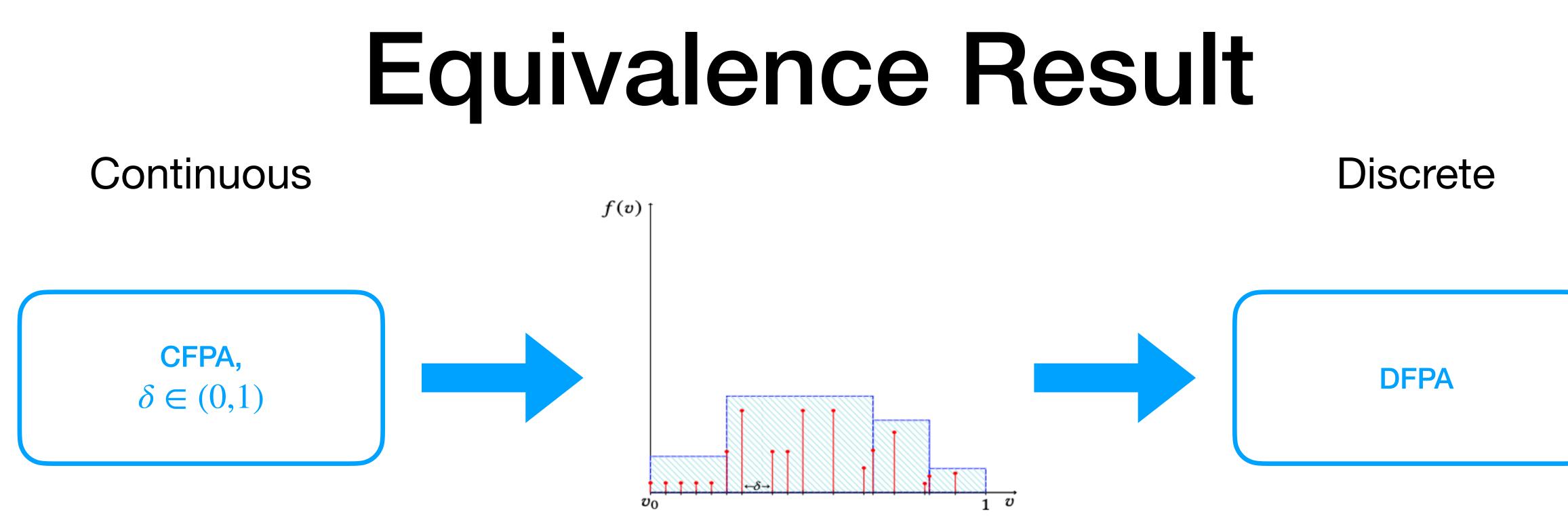
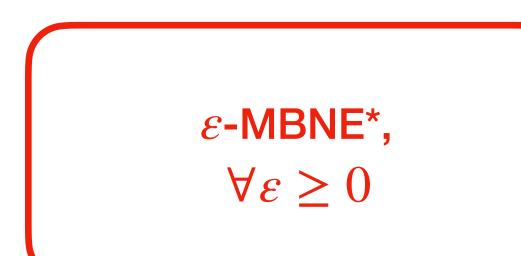
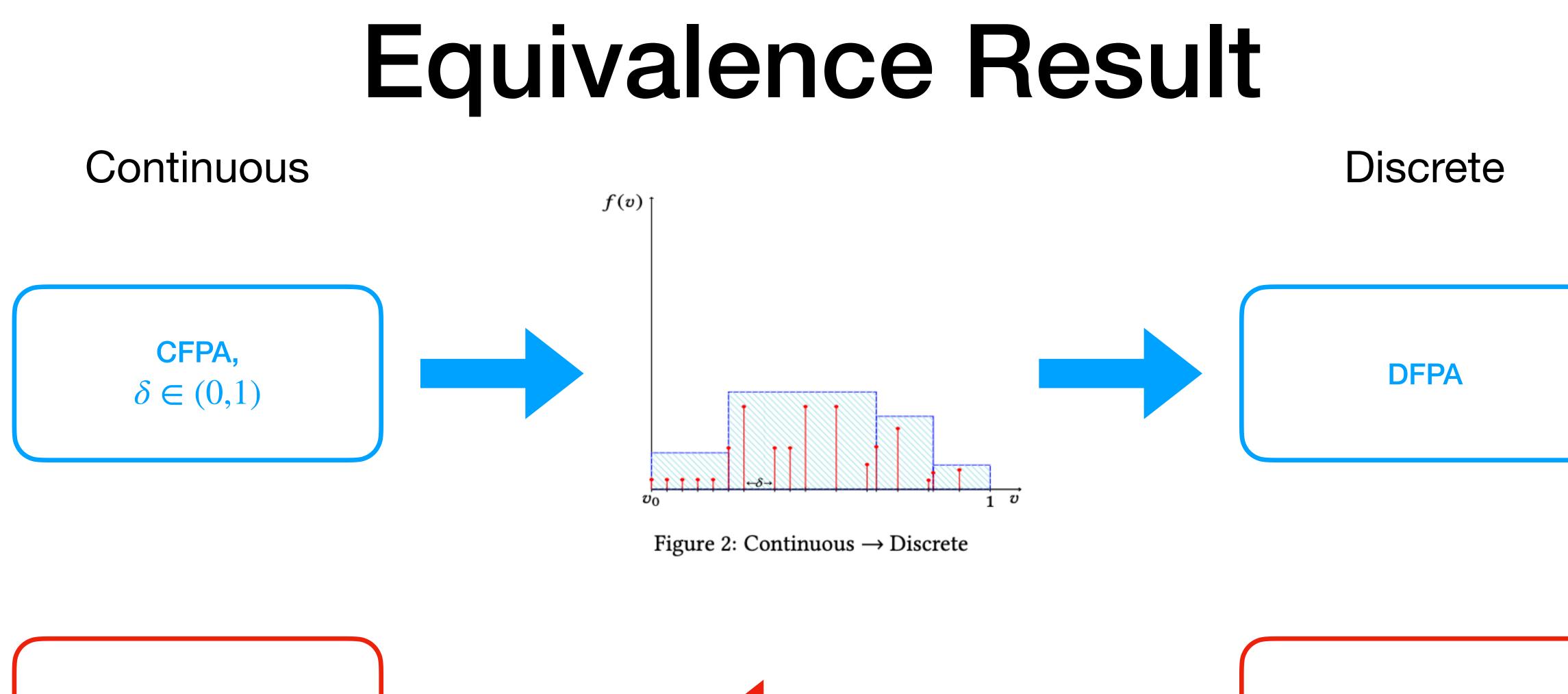
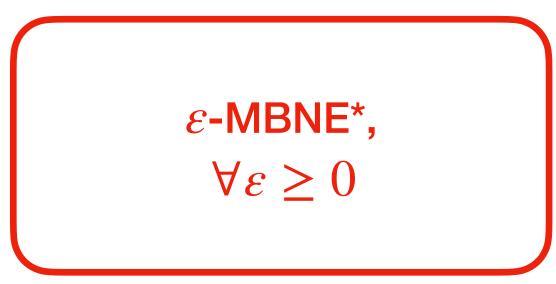


Figure 2: Continuous \rightarrow Discrete





 $(\varepsilon + \delta)$ -PBNE



PPAD-completeness

Theorem: [FGHK24] The problem of subjective priors is PPAD-complete.

Proof Outline:

- 1. PPAD membership: We use our equivalence result to translate to the CFPA setting, which is in PPAD by [FGHLP23].
- 2. PPAD-hardness: Reduction from the PPAD-complete problem PURE-CIRCUIT [DFHM22].

Theorem: [FGHK24] The problem of computing an ε -MBNE of a DFPA with

Updated State

continuous priors

PBNE (trilate PPAD-comp

iid priors

discrete priors

> iid priors

ateral tie-breaking): nplete [CP23]	PBNE: PPAD- and FIXP-complete [FGH
common	subjective
priors	priors
	PBNE: NP-complete [FGHK24] MBNE: PPAD-complete [FGHK24]
common	subjective
priors	priors

The iid Setting

The iid Setting

- Consider the setting of iid prior beliefs.

The iid Setting

- Consider the setting of iid prior beliefs.
- Solution concept: symmetric ε-MBNE

- Consider the setting of iid prior beliefs.
- Solution concept: symmetric ε-MBNE
- Polynomial Time Approximation Scheme (PTAS): An algorithm that computes an ε-approximate solution to a problem in time polynomial to the inputs, but possibly exponential in 1/ε.

- Consider the setting of iid prior beliefs.
- Solution concept: symmetric ε-MBNE
- Polynomial Time Approximation Scheme (PTAS): An algorithm that computes an ε-approximate solution to a problem in time polynomial to the inputs, but possibly exponential in 1/ε.
- Theorem: [FGHK24] The problem of computing a symmetric εapproximate MBNE of a DFPA with iid priors admits a PTAS.

Proof Sketch

1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ-near to a feasible one.

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- 2. Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ -near to a feasible one. caveat: exponential in |N|, |B|, |V|

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- 2. Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ -near to a feasible one. caveat: exponential in |N|, |B|, |V|
 - i) Use symmetry to remove exponential dependency on |N|.

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- 2. Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ -near to a feasible one. caveat: exponential in |N|, |B|, |V|
 - i) Use symmetry to remove exponential dependency on |N|.
 - ii) Shrink the bidding space to have size $O(1/\varepsilon)$, show mapping from approximate MBNE in the original space to approximate MBNE in the reduced space.

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- 2. Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ -near to a feasible one. caveat: exponential in |N|, |B|, |V|
 - i) Use symmetry to remove exponential dependency on |N|.
 - ii) Shrink the bidding space to have size $O(1/\varepsilon)$, show mapping from approximate MBNE in the original space to approximate MBNE in the reduced space.
 - iii) Use monotonicity to succinctly represent the support of the strategies.

- 1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.
- 2. Formulate a system of polynomial inequalities representing the equilibrium, to which we can apply a result from Grigor'ev and Vorobjov [GV88] to achieve a solution that is δ -near to a feasible one. caveat: exponential in |N|, |B|, |V|
 - i) Use symmetry to remove exponential dependency on |N|.
 - ii) Shrink the bidding space to have size $O(1/\varepsilon)$, show mapping from approximate MBNE in the original space to approximate MBNE in the reduced space.
 - iii) Use monotonicity to succinctly represent the support of the strategies.
- 3. Round the solution achieved in Step 2 so that it corresponds to a feasible set of strategies, provide a bound on the approximation factor of the MBNE.

continuous priors

PBNE (trilate PPAD-comp

iid priors

discrete priors

MBNE: PTAS [FGHK24]

iteral tie-breaking): iplete [CP23]	PBNE: PPAD- and FIXP-complete [FGF
common	subjective
priors	priors
	PBNE: NP-complete [FGHK24] MBNE: PPAD-complete [FGHK24]
common	subjective
priors	priors

continuous priors

PBNE (trila PPAD-com

iid priors

discrete priors

MBNE: PTAS [FGHK24]

teral tie-breaking): plete [CP23]	PBNE: PPAD- and FIXP-complete [FGH
common priors	subjective priors
2	PBNE: NP-complete [FGHK24]
	MBNE: PPAD-complete [FGHK24]
common priors	subjective priors

continuous priors

PBNE (trila PPAD-com

iid priors

discrete priors

MBNE: PTAS [FGHK24]

uniform tie-breaking? teral tie-breaking):				
plete [CP23]	PBNE: PPAD- and FIXP-complete [FGF			
common priors	subjective priors			
2				
	PBNE: NP-complete [FGHK24]			
	MBNE: PPAD-complete [FGHK24]			
common priors	subjective priors			

continuous priors

(ex-ante) P

PBNE (trilat PPAD-com

iid priors

discrete priors

MBNE: PTAS [FGHK24]

BNE: PTAS [CP23] unif teral tie-breaking): plete [CP23]	orm tie-breaking? PBNE: PPAD- and FIXP-complete [FGF
common	subjective
priors	priors
	PBNE: NP-complete [FGHK24] MBNE: PPAD-complete [FGHK24]
common	subjective
priors	priors

Updated Sta

continuous priors

(ex-ante) P

PBNE (trila PPAD-com

iid priors

discrete priors

MBNE: PTAS [FGHK24]

te/Future Work

BNE: PTAS [CP23]			
	niform tie-breaking?		
plete [CP23]	PBNE: PPAD- and FIXP-complete [FGF		
common priors	subjective priors		
2			
	PBNE: NP-complete [FGHK24]		
	MBNE: PPAD-complete [FGHK24]		
common priors	subjective priors		

Updated Stat

continuous priors

(ex-ante) P

PBNE (trilat **PPAD-com**

iid priors

discrete priors

MBNE: PTAS [FGHK24]

te/Future	Work
-----------	------

BNE: PTAS [CP23]		
	orm tie-breaking?	
nplete [CP23]	PBNE: PPAD- and FIXP-complete [FGHLP23]	
common priors	subjective priors	
2		
	PBNE: NP-complete [FGHK24]	
	MBNE: PPAD-complete [FGHK24]	
common priors	subjective priors	
	Thank you!	
Quest	ions? charalampos.kokkalis@ed.ac.uk	

References

- 1. Information". In: Econometrica 69.4 (July 2001), pp. 861–889.
- 2. Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC). 2023.
- 3.
- 4. and Mutliagent Systems (AAMAS). 2009.
- 5. Complexity of Equilibrium Computation in First-Price Auctions". In: SIAM Journal on Computing 52.1 (2023).
- 6. Computation (EC). 2024.
- 7. Symbolic Computation 5.1-2 (1988).

[Ath01] Susan Athey. "Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete

[CP23] Xi Chen and Binghui Peng. "Complexity of Equilibria in First-Price Auctions under General Tie-Breaking Rules". In:

[DFHM22] Argyrios Deligkas, John Fearnley, Alexandros Hollender, and Themistoklis Melissourgos. "Pure-circuit: Strong inapproximability for PPAD". In: Proceedings of the 63rd IEEE Symposium on Foundations of Computer Science (FOCS). 2022.

[EMS09] Guillaume Escamocher, Peter Bro Miltersen, and Rocio Santillan R. "Existence and Computation of Equilibria of First-Price Auctions with Integral Valuations and Bids". In: Proceedings of The 8th International Conference on Autonomous Agents

[FGHLP23] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, and Diogo Poças. "On the

[FGHK24] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Charalampos Kokkalis. "On the Computation of Equilibria in Discrete First-Price Auctions". To appear in: Proceedings of the 25th ACM Conference on Economics and

[GV88] D. Yu. Grigor'ev and N.N. Vorobjov. "Solving systems of polynomial inequalities in subexponential time". In: Journal of

Image References

- https://www.ed.ac.uk/news/students/2014/summer-job
- archive/2019/considering-a-phd
- from=mdr
- 5. <u>https://pubscale.com/blog/open-bidding-ebda</u>

2. <u>https://www.ed.ac.uk/history-classics-archaeology/news-events/events-</u>

3. <u>https://www.independent.co.uk/travel/news-and-advice/edinburgh-festival-</u> fringe-lonely-planet-uk-travelist-popular-experience-a9055171.html

4. <u>https://economictimes.indiatimes.com/industry/miscellaneous/going-going-</u> gone-covid-19-boosts-online-art-auctions/articleshow/78729989.cms?